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A polyethylene cylindrical rod with lamellar structure is loaded with tension-torsion combined stress. The 
orientation behaviour of the crystallites is evaluated by an improved orientation distribution function. The 
function assumes affine deformation and that the orthogonal relation of the three crystallographic axes is 
maintained during deformation. The improved function is achieved by assuming that slippage deformation 
occurs in a crystallite block. For cases in which twist is strong and samples are highly deformed, the 
orientation behaviour is interpreted by taking into account the slippage deformation of the (1 1 0) plane. 
This, with the assumption of spiral orientation of the chain axis and rotation of the a- and b-axes around 
the c-axis, results in good agreement between calculation and experimental results. 

(Keywords: polyethylene; combined stress; orientation distribution function; slippage deformation; pole figures; preferred 
orientation) 

I N T R O D U C T I O N  modifications, the orientation distribution function of 

The deformation mechanism of the crystalline texture of crystallites and the j th individual crystallographic plane 
can be calculated. In this paper, the new orientation 

polyolefin with spherulitic structure has been studied by distribution function will be derived and the deformation 
assuming affine deformation z-5. These studies focused mechanism under tension-torsion combined stress will 
on interlamellar and intralamellar deformations in 

be discussed. It is recommended that the previous paper 1° 
a spherulite. Recently, Hibi et al. 6 9 have studied 

be referred to before proceeding further. 
the deformation mechanism by an improved theory 
assuming orientation of the lattice axes. For  large plastic 
deformation, the superstructures, such as spherulites, THEORY 

break down and are no longer suitable for use in The original idea of Hibi's theory is the assumption of 
analysing the orientation behaviour. Hibi's theory 
dealt with crystallite blocks smaller than a lamella and affine deformation with volume kept constant and the 
rotation of crystallite blocks accompanying plastic orthogonal relation of the three crystallographic axes 

being maintained during plastic deformation. Two main 
deformation was taken into account. With this improve- factors are pointed out here as guidelines to the following 
merit, the orientation behaviour of rolled sheet 6-s and derivation. First, under combined stress, the fact that the 
reorientation during off-angle drawing of rolled samples chain axis does not coincide with the cylinder axis of 
were evaluated 9. the specimen has to be considered in coordinate 

In a previous paper 1°, the authors have investigated transformation. Second, the effect of rotation of the 
the orientation behaviour of crystallites in a polyethylene a- and b-axes around the c-axis due to slippage of the 
cylindrical rod under tension-torsion combined stress by (1 1 0) plane will be complementary to the orientation 
wide-angle X-ray diffraction (WAXD). As a result, it was distribution function of the main axes of crystallites. 
suggested that the c-axis oriented in the apparent drawing 
direction and the b-axis oriented in the sample radial 

Consideration of  the spiral orientation direction. To evaluate this orientation behaviour, the 
orientation distribution function proposed by Hibi 6-9 During deformation, the coordinate used to define the 
must be further improved because slippage of the sample is not changed while the coordinate used to define 
crystallographic plane and spiral orientation of the the crystallite is affected by the resultant stress. Let the 
chain axis both occurred under combined stress. The sample coordinate be defined as O - X I X 2 X  3 which has 
improvement will be made by assuming that rotation of the X~-axis as the radial axis, the X2-axis as the 
the a- and b-axes around the c-axis occurs after the circumference axis and the X3-axis as the longitudinal 
slippage deformation in a crystallite block. With these axis. The corresponding unit vectors are el, e2 and e3, 

respectively. On the other hand, the coordinate used to 
define the crystallite is set as the O-abc which has 

* To whom correspondence should be addressed the a-, b- and c-axes corresponding to the crystallographic 
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X3 angle so that simulation can be close to the real condition. 
This correction is expressed by the following equation 
described in terms of the correction angle 6 around the 
X~-axis: 

(e~] [ cos6, T-sin& 0](e~] 

c b ,~e~= / ±sin& cos& 0/~e~,  (3> 

te J L 0, 0, 1Jr6) 
When the cylindrical rod is loaded with tension-torsion 
combined stress, the relation of the Cartesian coordinate 

Xl ~ "  O-abe of the crystallite with respect to the reference 
coordinate O-X'~X~X~ of the bulk sample can be derived 
from the foregoing discussion. The relative positions 
before deformation of the crystallite axes and reference 

8 ~  \ 1  J axes are summarized in Figure 2 and are expressed in 
\ I / 

the following equation: 
tl . . , ( e ; ]  [ cos6, T-sin(5, 0][..1, 0, 0 ] 

Figure 1 Eularian angle 0, ~b and t/ specifying the relation between ~ e ~ =  / --I-since, cos(~, 0 / / 0  , cos f l ,  s in f l  
the principal axis O-abc of the crystal and the Cartesian coordinates 

O-X,X2X3 (.e~) L 0, 0, lJL0, - sin fl, cos flJ 

a-, b- and c-axes. The unit vectors of the latter system F cos ~b cos 0 cos t / -s in  q~ sin t/, 
are ca, eb and ee, respectively. These two systems are x l sin q~ cos 0 cos r/+ cos q~ sin t/, 
shown in Figure 1. The transformation which relates the 
O-abe to  O - X I X 2 X  3 coordinates may be described in - s in  0cos1/, 
terms of three Eulerian angles, 0, q~ and ~/, and is described -cos  ¢ cos 0 sin r/-sin ¢ cos r/, sin 0 cos ¢'] ['e,'} 
as follows. - s in  ~b cos 0sin r/+ cos ~b cos ~/, sin 0sin qS//~eb~// 

f e ' }  [c°s ~b c°s 0 c°s r / -  sin ~b sin ~/' [ sin0sinr/, cosO_l(ec) 
e2 =/s in  ¢ cos 0 cos ~/+ cos ¢ sin r/, cos qS* cos 0* cos r/* - sin O* sin ~/*, 

e3 L - sin 0 cos r/ = sin tk* cos 0* cos r/* + cos ~b* sin r/*, 

-cos  ~b cos 0 sin r/-sin ~ cos r/, sin 0 cos thlfe,)  - s in  0* cos r/*, 

-sin~bcos0sinr/+cos~bcos~/, sin0sinqS/~eb~ -cos~b*cos0*sinr/*-sinC*cosr/*, sin 0* cos C*l fe , )  

sin0sinr/, cos0 J l e J  - sin C* cos 0* sin r/* + cos ~b* cos r/*, sin0*sin~b*Ke Q 
/ /  / 

cos0* J [ e J  ya,,, a,2, ai31(e,~ sin0*sinr/*, 

=/a,,La31 , a32,az2' a33Jt.ecJ~l]e~( (1) I-a'i, a*2, a*31fea ~ . .  . = a*,, attire Q (4) 
a* a* It has been proved in the previous paper i° that, when _ 31, 32, a~a.](e¢) 

the polyethylene cylindrical rod was loaded with 
tension-torsion combined stress, the c-axis, which is the X= 
molecular axis, oriented in the direction of tilting from ~/ / C ~ O  ~ = × ~  
the sample axis, due to the resultant force of tensile and 
shear forces. The tilt angle is defined as the spiral 
angle ft. The tilting direction, which is the apparent draw 
direction, is here defined as the X;-axis. Let the Xl-axis 
be kept unchanged and then the X~-axis is defined as 
the axis perpendicular to the X'3-X1 plane. The unit / 
vectors after deformation then become e~, e~ and e~. Xl 
Transformati°nfr°mtheO-X1X2X3t°O-X'lX'2X'3 ~ 8 . ~  , ' 1 \ \ ' 1 - ' ~ ' ~  "qf/7 
(X' 1 = Xa) coordinates may be described by the following 
equation: 

fe~l [1, O, 0 7 r e , )  

~e~? = 10, cosfl, sin t i lde2? (2) 
{e~) I_0, -s infl ,  cosfl_](e3) 

Until this point, relation of the O-abc and the O-X'~X'2X'3 
coordinates can be established. Because the cylindrical 
rod has a curvature and the specimens prepared for X-ray Figure 2 Eularian angles 0", ~b* and ~/ specifying the relation between 

the coordinates O-abc and O-X~X~X~. The spiral angle fl and the 
measurement were cut from the deformed rods, one more correction angle 6 specifying the relation between the coordinates 
modification is necessary to correct the X-ray incident o-x,x=x3 and O-X'~X~X~ 
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Orientation distribution function of  the crystallite axes in length of the c vector as: 

With the coordinate system expressed in equation (4) //r'e"~ 3 sin 0* dO* dO* 
and shown in Figure 2, the orientation distribution [ ] -  - (6) 
function will be derived without taking into account the \ r c /  sin 0 "  dO*' d~b*' 
slippage deformation at this moment. The slippage The relation of the c vector components (in the 
deformation will be explained later. The assumptions O-X;X'~X~ coordinate system) before and after defor- 
made are affine deformation and the orthogonal relation tuit ion is expressed as: 
of the three lattice axes. 

f f*'l As mentioned above, when the cylindrical rod was 2a(a*3) a13 
loaded with tension-torsion combined stress, the rc~22(a*a)~=r'c~a'~'3 
apparent drawing direction did not coincide with the 
sample axis direction. The orientation behaviour is [~23(a~3)J I.a*'3J 
analysed by using the reference coordinate, O-X~X~X~,  Because . 2 . 2 . 2 (al 3) + (a23) +(a33) = 1 in Cartesian coordinates, 
as the coordinate system after deformation. The relation this leads to: 
between the crystallite and the reference O-X~X~X~ 
coordinate as shown in equation (4) can be expressed by (r'c/rc) 2 = 1/C1 
the azimuthal angle ~b*, the polar angle 0* and the C a -  *' 2 *, 2 *, 2 --(a13/21) +(a23/22) +(a33/23) rotational angle r/*. To define the c-axis in the O-X~X'~X'~ 
system, angles ~b* and 0* are sufficient, while the a- and (7) 
b-axes depend on both the c-axis direction and the The c' vector is therefore further described in the next 
rotational angle r/*. The orientation distribution function equation: 
of crystallites before deformation, w*(cos 0", ~b*, r/*), is 

= C121(al 3) (8a) expressed as the probability density function with respect (a,,3)2 2 , 2 
to the a, b and c vectors. (a,~)z 2 , 2 = C122(a23 ) (8b) 

After deformation, the relation between the O-X';X~Xg 
and O-abc coordinates is expressed in terms of the new (a,~)z 2 , z = C123(a33 ) (8c) 
Eulerian angle 0",  ~b*' and r/*', and the orientation Substituting equation (4)into equation (7)leads to: 
distribution function becomes w*'(cos 0",  ~b*', r/*'). In the 
following text, the deformed system is represented by (r'¢/r~)=C; 1/2 
symbols with superscript '. The relation of the orientation = 2123122 cos 2 0"  
distribution function before and after deformation can be 
expressed as: + 22 sin2 0"( cos2 4~*' +)-1422 sin 2 q~*')] 1/2 (9) 

sin 0* dO* dq~* dr/* Therefore, as Ca can be determined from equation (7), 
w*'(cos 0", ~b*', ~/*') = w*(cos 0", ~b*, I/*) sin 0"  dO*' d~b*' dr/*' the vector c' can be derived from equation (8) and the 

chain axis of the crystallite is defined. 
(5) To define the orientation of the main axes of the 

The function is expressed in terms of change of the ratio of crystallite, one more axis has to be defined. The change 
the polar angle, the azimuthal angle and the rotational of the b vector due to deformation is considered by leading 
angle before and after deformation, the change ratio of the rotational angle ~/*. As the length 

It is assumed that the deformation is uniform of the b vector changes from r b to r~,: 
t h roughou t  the sample and deformat ion  ratios in the X'~, (,J lb(a~2) ) (a*~l 
X~ and X~ direction are 21, 22 and 23, respectively. The ( .  • ~ ' ~  * '~ 
c vector of the c-axis direction became the c' vector by rb/A2b(a22)[ = r b ]  a22 (10) 

| 
affine deformation and the a and b vectors became the 1.23b(a~2)) t.a*'2) 
a' and b' vectors, keeping the orthogonal relation to the 
c vector, respectively. Consequently the X';, X~ and X~ From the second and third rows of equation (10): 
components of the c vector become 21, 22 and 23 times, ., a22 22b(a~2) 
and those of the a and b vectors become 21a , 22a , 23a , - - - -  (11) 
21b' /~2b and A3b times, respectively. Here, the relation a32 23b(a~2)  

between 2~ and 2ib can be expressed using the following Substit-Aing equation (4) into equation (11) leads to: 
equations, by assuming that constant volume and 
the orthogonal relation of the three axes are maintained: - sin 4)*' cos 0"  + cos ~b*' cos r/*'/sin 1/*' 

2121b = 2222b ~--- 23/~3b = l = (22b/23b)(sin 0*'/sin 0") 

212223=1 x(-s inc/~*cosO*+cos~*cosq*/s inr /*)  (12) 

21b22b23b ~--- 1 Differentiating equation (12) with respect to q* and r/*', 
one obtains: 

The derivation of these relations is shown in a previous 
paper 6. dr/*/d~/*' = (cos q~*'/cos ~b*)(sin q*/sin r/.,)2 

Next, the orientation distribution function of crystallites ., . ,  . ,  . ,  . X(23b/22b)(sin0*/sin0*') (13) 
after deformation, w (cos 0 , q~ , r/ ), is derived in terms 
of the deformed ratios 21, 22 and 23. Let the length of the c In equation (13), 0", qS* and r/* denote the undeformed 
vector before and after deformation be r¢ and r'¢, state. In order to deal only with angles after deformation, 
respectively. The change in ratios of the polar angle and further treatment is necessary and the derivation is 
the azimuthal angle are expressed in terms of the change summarized in a previous paper 6. Only the result is shown 
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here: ¢ 

dr/*/dq*' = ~,lb~,IC]/2B11 
, t  2 , t  2 , t  2 

Bl=(al2/, ,~lb ) +(a22 / , ,~2b  ) + ( a a 2 / , ~ a b  ) ( 14 )  

In this way, the change of the 0", 95*' and r/*' with respect 
to  the 0", qS* and r/* is expressed in terms of the values 
of the deformed state so that the orientation distribution 
function after deformation can be obtained. Substituting 
equations (6), (9) and (14) into equation (5), one obtains: 

w*'(cos 0", 95% ~/*')= w*(cos 0", 95", ~/*)21621B? 1C? 1 a b" 
(15) ~t ,~,. / 

As the material before deformation is considered Figure  3 Ro ta t ion  of the principal  axis  O-abc a r o u n d  the c-axis for 
to be without orientation, the w*(cos 0", 95", ~/*) in slippage in the crystallite block 
equation (15) can be replaced with a constant. The 
orientation distribution function of crystallites, w*'(cos 0", In this way, the coordinate system of the crystallite after 
95 , q ), in equation (15) is based on the reference deformation is related to the coordinate system used in 
coordinate O-X~X'~X~ as shown in Figure 2. the experiment. This enables direct comparison to be 

made between the calculated and the experimental results. 

Slippage deformation of the (1 1 O) plane Orientation distribution function of crystal plane 
As mentioned previously, at large deformation the Next, the orientation distribution function of the jth 

slippage of the (1 1 0) plane is followed by rotation of the individual crystal plane, qJ(cos 0j, 95~), will be derived. 
a- and b-axes around the c-axis. Let ~ be the rotational The orientation distribution function of crystallites, 

after considering the spiral orientation and slippage angle due to such slippage. Then, the relation between 
the coordinates used to define the unit cell before slippage deformation, is denoted as w'(cos 0', 95', r/'). Derivation of 
(O-abc) and after slippage (O-a#b#c #) can be shown the w'(cos 0', 95', q') function can be performed easily as 
schematically as in Figure 3. Let the unit vectors in the shown in equation (15), and may be expanded into the 

equation shown below through the expansion of Jacobi's O-a#b#c # system be e~, e~ and e~, and Figure 3 can 
be numerically presented as: polynomials up to the expansion coefficient l = 8: 

8 l l 

fea} I c o s 0 ~ , - s i n ~ ,  0 ] ( e ~ )  w'(cosO"95"r/')=lE--ornE---lE[AlmnCOS(m95'+nrf)n= -I 

eb =[s in~,  cos~, 0 [ ~ e ~  (16) +Bl,,sin(m95,+nq,)]Ztm.(cosO,) 
ec k 0, 0, 1/I, eff)  

(18) 
Substituting equation (16) into equation (4), one obtains: where the coefficients A~,.. and Bt,.. may be given as: 

( e ~  cos 95" cos 0* cos r/*- sin 95" sin q*, A,,~.'~ 1 I 2" 2~ w'(cosO',#,r/') 
~e[~= sin 95" cos O* cos r/* + cos 95" sin r/*, BlranJ='~2L,=Od,,=OdO,=O 
ke~) - sin 0* cos r/* (cos(m95' + nr/')] ~ . 

x ,; ~LIm.tCOS 0') sin 0' dO' d95' dr/' 
- cos  95* cos 0* sin r/* - s i n  95* cos r/*, sin 0* cos 95*-] (sin(m95' + mf)) 

- s i n  95* cos 0* sin r/* +cos 95* cos r/*, sin 0* sin 95"// (19) 
sin 0* sin t/*, cos 0* / / With these two values, Aim. and B~,.., the orientation 

distribution function of the jth individual crystal plane 
may be expanded as: [ cos ,-since, 01(e: l 8 , 

0 ' ' e ' "  qJ(cos Oj, 95j)= ~ ~ [A,~ cos(m95~) 
X sin COS / ]  ( / = 0  m= - l  

0, 0, 1_11, eff)  + Bi,, sin(m95~)]lq~"(cos 0j) (20) 

I cos95 # cos0 # cos r/#-sin95 # sin r/#, Here, the polar angle 0j and the azimuthal angle 95j 
link the crystal plane normal r~ with the Cartesian 

= sin 95# cos 0 # cos r/# + cos 95# sin r/#, coordinate O-XIX2X 3. The coefficients Az,.. and Bt,.. in 
- s i n 0 # c o s q  #, equation (19) may be related to Alto and Bi,. in 

sin 0# cos 95 #~_e~_ equation (20)in  terms of the addition theorem of 
~ COS ~ ~ COS 0~ sin ~ ~ ~ sin ~ ~ cos ~ Legendre polynomials: 
-sin95#cos0#sin~/ +cos95#cosq #, s in0#sin95#l~e¢~ A!m~=2n 

sin 0 # sin ~/#, cos 0 # II, e~)  BJt,,j 

I a~,, a~z, a ~ a ] f e : ]  t fAt,..cos(n@j)--Btm, sin(n~j)~Vl.,cos(9 ~ 
m=E-I ~.Alrnn Sln(nf~j)+ Blmn 1 II ~, fl 

x 
= a z, (17)  

/ /  / 
[_a3~, a~2, a3~3]ie~) (21) 
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Table 1 Conditions for the combined stress loading experiments randomly in the X I - X  2 plane and does not show any 
concentration as a peak. On the other hand, in cases of 

Notation Tensile speed Torsional speed 
(mmmin-1) (degmin-1) the simply twisted sample and the combined stressed 

samples, these normals distribute in the plane rotated 
Tension 0.5 - from the X1-X 2 plane toward the X I - X  3 plane, and 
A 0.5 8 peaks appear, showing the concentration. The angle 
B 0.5 15 between the X 1 - X  2 plane and the concentration peak is 
c o.5 25 
Torsion 15 defined as the spiral orientation angle fl, values of which 

are shown in Table 3. 

Table 2 Draw ratio of each sample Simulation without considering slippage deformation 
Figure 5 shows the pole figures calculated by the 

Tension A B C Torsion orientation distribution function of the normals of 
the jth individual crystal plane, qJ(cos 0j, qSi). In the 

Draw ratio 9.0 10.5 11.0 11.0 3.4 calculation, the correction angle 6 and the spiral 
orientation angle fl in Table 3 were used. In the uniaxially 
drawn sample, the normal of the (002) plane, which 

Table 3 Correctional angles of each sample represents the c-axis, orients strongly in the X3-axis 
direction. The intensity distribution in the calculated pole 

Tension A B C Torsion figures of the simply twisted sample are similar to the 
Correction angle, 0.0 0.0 4.2 6.5 11.5 pole figures shown in Figure 4b, and the (020) plane 

6 (degree) normal, showing the orientation of the b-axis, orients 
Spiral orientation 0.0 23.0 42.0 55.0 75.0 selectively in the Xl-axis direction which is the sample 

angle, fl (degree) radial direction. In Figure 5c, the intensity distribution 
Slippage angle, 0.0 0.0 10.0 15.0 0.0 is qualitatively in accord with the pole figures, showing 

(degree) that the (002) plane normal orients strongly in the 
apparent drawing direction. As mentioned in the 
Introduction, the orientation distribution function is 

l-IT'(cos O j) and liT(cos ®j) are the associated Legendre regarded as originating from the rotation of crystallite 
polynomials, which may be further related to the blocks that subdivided from a lamella. For uniaxial 
Legendre polynomials as follows: tensile, simple twist and condition A, it is suggested that 

Zto,(COS ®j) = I~7(cos ®j) (22) a lamella broke due to the resultant force of the applied 
combined loading and the resulting crystallite blocks 

Zt,,o(COS O j) = 1-]~n(cos O j) (23)  rearrange such that the normal of the (0 0 2) plane points 
to the apparent drawing direction. In addition, it is 

The polar angle ®j and the azimuthal angle Oj link the suggested that non-uniform stress distribution existed 
crystal plane normal rj with the Cartesian coordinate inside the sample cross-sectional plane and this resulted 
O-abc. The coefficients Aim and Bi,, in equation (21) are in the rotation of the major axis of the crystallite towards 
given in terms of each jth crystal plane. In this paper, the sample radial direction. 
substituting the coefficients about the (1 1 0), (200), (020) For conditions B and C, the maximum intensity 
and (002) planes into equation (20) leads to the four 

position of the (1 1 0) plane normal and its intensity 
orientation distribution functions of the crystal plane distribution are somewhat different from those of the 
normal. Then, the pole figures calculated by these measured pole figures. Considering the crystal unit cell 
functions are compared with the measured pole figures ofpolyethylene, thenormals of the(1 10),(200)and(020) 
of the corresponding crystal plane, planes lie in the same plane, and the angle between the 

normal of the (1 10) plane and that of the (0 2 0) plane is 
EXPERIMENTAL 33.7 ° (ref. 11). In condition A, the angle between the peak 

positions of these two normals is greater than 30 °, while 
The samples for WAXD, which were the same as in the for conditions B and C it is less than 30 °. The spread 
previous paper TM, were prepared as rectangular chips by of the intensity distribution becomes sharper in the 
sliding off the surface of the deformed polyethylene azimuthal direction and broader in the polar direction. 
cylindrical rod. These chips were then arranged into a 
small plate with the aid of amorphous silicon adhesive. 
The conditions of the combined stress are summarized Simulation with slippage deformation 
in Table 1. The draw ratios of the bulk samples are The discrepancy between the calculation and the 
shown in Table 2. The correction angle 5 of each condition measurement in the previous subsection is suggested to 
mentioned above is shown in Table 3. The instrument be due to the slippage deformation of the (1 10) plane, 
used was a Rigaku X-ray generator (CN2028) equipped as mentioned previously. It is thought that deformation, 
with pole figure attachment (PMG-A2) at 40kV and including a rotation of the a- and b-axes around the 
20 mA. A CuK~ X-ray and Ni filter was used. c-axis, must occur in conditions in which twist is strong. 

This rotation is considered to be due to slippage of the 
RESULTS AND DISCUSSION (1 10) plane which is the most closely packed atomic 

plane of polyethylene. A simple schematic representation 
Figure 4 shows the pole figures measured from WAXD. of such a mechanism is shown in Figure 6. When the 
Each normal of the (1 1 0), (2 00) and (0 2 0) planes of slippage deformation and rotation mechanisms occur, the 
the uniaxially drawn sample in Figure 4a distributes normals of the (1 1 0), (2 0 0) and (0 2 0) planes turn around 
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X,, (I I O) Xl (200) Xl ~,~ (I I O) X .5 (200) a ~  ~ . r  b .s2.52., ~ "~' " ,,,~'~"s ,.4¢~.r/ 
; ~ : O x ~ ?  x ,  x. x ~. 

e~ et et ej 
X,= (020) Xi (020) 

• 

~i 2.| 

L ' "  

Xl 5.8 5.8 ~= X, X-z ej ej 

X l ~  111 O) ~ (200) d-~,,x' (, i o) ~ L ' - ' -  2 (200) 

C Ct '/'i .o '/'t 

ej e~ at at 
Xs (020) Xs (020) 

2.7 

Xl 4.3 1.9 ~'= Xl X'z 
Oj ej 

Xs (I I O) ~ (200) e " ~ ~ 2 o  ÷~ 

!'ix  " gz 1.8 
oj ot 

X= (020) 

- - - ' ~ ~ o . 9  4,j 

Z.I ~ 
Figure 4 Observed pole figures of the sample loaded with combined 

3.8 x~ 3.3 ~-= stress for: (a) tension; (b) torsion; (c) condition A; (d) condition B; 
O~ (e) condition C 
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9 

X= g= Xi Xj ~= Xl 
el ej el ei 

X L . . . . ~  {020) x = . . . . ; ~  {002) x3 {020) x~ {002) 

8 
X, ~ X= Xz Xl X= Xi X= 

ej ei ej e~ 

Xl (110) Xi (200) Xl (110) Xl {200) 

' 2 

Xl 6 4 2 X~ X= 
el #J X~ S ~= XL 

e~ e i 
xa {020) (002) x i  (020) x i  (002) 

2 6 

Xl 8 3 I X-= Xl X,, Xl 8 4 X= X! Xz 
ej Oj 8j #i 

Xll (110} Xi 2 ~'6 (200) 

e 3 

el ej 
Xs (020) Xa (002) 

, 8 

3 Figure 5 Pole figures calculated from the orientation distribution 
9 ~-¢~-~Y/'I 't / function by introducing the spiral orientation angle/~and the correction 
x~ x-= xl x= angle 6 for: (a) tension; (b) torsion; (c) condition A; (d) condition B; 

ej #i (e) condition C 
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the c-axis. This is illustrated in Figure 3 and expressed occurs in the direction perpendicular to the c-axis on the 
in equation (16). The values of the slippage angle ~ that (1 l O) plane in the crystallite block because of the twisting 
are obtained from the measured pole figures are effect in the combined stress in conditions in which twist 
summarized in Table 3. The calculated pole figures, in is strong. 
which e is considered, are shown in Figure 7. The 
maximum intensity area of the (1 10) plane normal shifts 
to the direction with smaller polar angle, and the intensity CONCLUSIONS 
distribution of the (1 1 0), (2 0 0) and (0 2 0) plane normals From the above results and discussion, the following 
becomes broader. The calculated pole figures are conclusions may be drawn about the deformation 
qualitatively in accord with the measured pole figures. It mechanism of a polyethylene cylindrical rod under 
is suggested that, when crystallite blocks that subdivided tension-torsion combined stress. 
from a lamella rearrange, the slippage deformation When the cylindrical rod is loaded with combined 

stress under strong tensile or a small ratio of deformation, 
it is suggested that rearrangement of crystallite blocks 

~ / / / / / / ~  occurs due to the resultant force of tension and shear 
forces. The c-axis orients in the direction of the resultant 
force while the b-axis orients in the radial direction. 

When twist is strong and the sample is highly deformed, 
it is suggested that the slippage deformation occurs in 
the direction perpendicular to the c-axis on the (1 1 0) 
plane, and the a- and b-axes rotate around the c-axis in 
the crystallite block. 
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Figure 7 Pole figures calculated from the orientation distribution function by introducing the spiral orientation angle fl, the correctional angle 6 
and the slippage angle c~ for: (a) condition B; (b) condition C 

2474 POLYMER, 1993, Volume 34, Number 12 


